

## **TENDER DOCUMENTS**

## **MECHANICAL LAB EQUIPMENT**

## NUTECH/SCM/Mech Lab-2019/TD-066

## NATIONAL UNIVERSITY OF TECHNOLOGY

## TENDER NOTICE

## National University of Technology (NUTECH)

## NUTECH/SCM/Mech Lab-2019/TD-066

Sealed bids are invited from Government / FBR Registered Firms for the procurement of Mech laboratory equipment for NUTECH Technology Labs.

- 1. Tender documents containing terms & conditions and detailed specifications of items can be downloaded from NUTECH website "<u>https://nutech.edu.pk/d-p.php</u>" w.e.f **06 May 2019.**
- 2. Quotations shall be submitted as per requirement of the tender documents.

3. Bidders will be required to submit bank draft/PO equal to 5% of quoted value as Bid Bond in favor of National University of Technology (NUTECH).

- 4. Sealed bids with detailed specification should reach on the following address latest by **0830 hours on 23 May 2019.** Late submission will not be entertained.
- 5. Bids will be opened at **0900 hours** on **23 May 2019**at SCM Office.
- 6. Project is to be completed in 60 days from the date of award of contract.
- Submit Rs 1500/-as Tender fee in favour of NUTECH HBL account: NUTECH Tendering and contracts, 5037-7000210755. Please attach bank receipt with technical offer. Offers will not be entertained without payment of processing fee.

## Deputy Director (Supply Chain Management Office) NATIONAL UNIVERSITY OF TECHNOLOGY (NUTECH) UPROAD, SECI-12, ISLAMABAD Tel: 0092-51-5476768, Ext :178



# NATIONAL UNIVERSITY OF TECHNOLOGY SUPPLY CHAIN MANAGEMENT OFFICE

## **INVITATION TO TENDER**

## Submission Date/Time 23 May 2019 at 0830 hours

1. NUTECH desires to procure the list of item(s)/Store(s) as per Annexure-A. Interested bidders are requested to send their bids through courier or deliver at NUTECH under <u>two separate sealed</u> <u>envelopes (placed together in third envelope)</u>, marked clearly, "Technical Offer" and "Commercial <u>Offer</u>", respectively to the undersigned, latest by or before above mentioned due date. If due to any unforeseen circumstances, NUTECH establishment remains closed, then the last date of submission will be extended to next working day.

2. Please also note that Technical Offer should contain Annexes-A & B duly filled in (supported with relevant technical literature /details/ catalogues etc) and receipt of tender processing fee. Commercial Offer will contain Annexure- C and bid bond. Please ensure no space is left blank in the annexes.

- 3. Following must be noted for this IT (Invitation to Tender):
  - a. 2 x copies of technical offer are to be provided.
  - b. Annexes A, B and C must be signed and stamped, Attach only relevant documents.
  - c. Please complete all document as per given format. Do not use any other format or letter head. Offer may be rejected if given format is not followed.
  - d. Validity of offer will be 90 days.
  - e. Delivery period will be 60 days after the date of award of contract.
  - f. Tender(s) must be accompanied with a Bid Bond in agreement of faithful compliance of the conditions of Contract/Purchase Order. This amount will be equivalent to 5% of the total quoted value. In case of non-acceptance of any offer, the Bid Bond will be returned to the bidder by fastest possible means. The Bid Bond amount submitted by the successful bidder will however, be refunded on effective termination of Contract/ Purchase Order. (The Bid Bond will be forfeited in case of default by the bidder from his commitments made through his offer). Submission of Bid Bond is mandatory, otherwise your offer will be rejected.
  - g. 2 years warranty against 5% bank guarantee will be required from the successful bidders

from the date of commissioning.

h. Rates should be quoted on Free Delivery basis at NUTECH Islamabad.

4. We reserve the rights to accept or reject any or all tenders as a whole or in part without assigning any reason whatsoever. The decision in this regard will be firm, final and binding on all bidders.

DD (Supply Chain Management)

Annex A



## NATIONAL UNIVERSITY OF TECHNOLOGY

## SUPPLY CHAIN MANGEMENT OFFICE

## **TECHNICAL OFFER**

User Reference No Mech Lab Eqpt-004

Date: 02-05-2019

## **Technical Specification**

| Ser | Part<br>No | Item<br>Name/Size                 | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A/U | Country of<br>Origin                  | Qty<br>Req | Aty Bidder Compliance<br>Req |    | ompliance | ance Tech Scrutiny<br>done by us |           |
|-----|------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------|------------|------------------------------|----|-----------|----------------------------------|-----------|
|     |            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                       |            | Yes                          | No | Alternate | Accepted                         | Rejected  |
|     |            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                       |            |                              |    | Offer     | Reason of                        | Rejection |
| 1.  |            | Vibrations<br>Trainer with<br>DAQ | Vibration trainer with<br>experiments on damping,<br>resonance, dual-mass system<br>and vibration absorption<br>6 pendulum oscillators<br>2 bar-type oscillators<br>1 spring-mass oscillator<br>Electrical imbalance exciter<br>control unit for the imbalance<br>exciter with a digital frequency<br>display and a TTL output for<br>triggering external devices<br>Tune able absorber with a leaf<br>spring<br>adjustable oil damper<br>Electrically operated drum<br>recorder for recording free<br>vibrations<br>Polar chart recorder for<br>determining the amplitude and<br>phase of forced vibrations | Nos | North<br>America,<br>Europe,<br>Japan | 1          |                              |    |           |                                  |           |

|    |              | Technical data                 |     |          |   |  |  |
|----|--------------|--------------------------------|-----|----------|---|--|--|
|    |              |                                |     |          |   |  |  |
|    |              |                                |     |          |   |  |  |
|    |              | 700x25x12mm, 1.6kg             |     |          |   |  |  |
|    |              | Beam, elastic: LxWxH:          |     |          |   |  |  |
|    |              | 700x25x4mm, 0.6kg              |     |          |   |  |  |
|    |              | Tension-pressure springs       |     |          |   |  |  |
|    |              | 0.75N/mm                       |     |          |   |  |  |
|    |              | 1.5N/mm                        |     |          |   |  |  |
|    |              | 3.0N/mm                        |     |          |   |  |  |
|    |              | Imbalance exciter              |     |          |   |  |  |
|    |              | 0 to 50Hz                      |     |          |   |  |  |
|    |              | 100cmg                         |     |          |   |  |  |
|    |              | Oil damper: 5 to 15Ns/m        |     |          |   |  |  |
|    |              | Absorber leaf spring: -        |     |          |   |  |  |
|    |              | WxH: 20x1.5mm                  |     |          |   |  |  |
|    |              | total mass: approx. 1.1kg      |     |          |   |  |  |
|    |              | Tune able: 5 to 50Hz           |     |          |   |  |  |
|    |              | Drum recorder: - 20mm/s, width |     |          |   |  |  |
|    |              | 100mm                          |     |          |   |  |  |
|    |              | Polar chart recorder: - Ø      |     |          |   |  |  |
|    |              | 100mm                          |     |          |   |  |  |
|    |              | Experimental Capabilities: -   |     |          |   |  |  |
|    |              | Experiments with               |     |          |   |  |  |
|    |              | a. Pendulums                   |     |          |   |  |  |
|    |              | b. Spring-mass system          |     |          |   |  |  |
|    |              | c. Bar-type oscillator         |     |          |   |  |  |
|    |              | d. Undamped oscillation        |     |          |   |  |  |
|    |              | e Damped oscillation           |     |          |   |  |  |
|    |              | f Forced vibration             |     |          |   |  |  |
|    |              | a Damped and un damped         |     |          |   |  |  |
|    |              | resonance                      |     |          |   |  |  |
|    |              | h Absorber effect in multi-    |     |          |   |  |  |
|    |              | mass oscillators.              |     |          |   |  |  |
| 2. | Moment of    | Rotating bar                   | Nos | North    | 1 |  |  |
|    | Inertia with | Length: 550mm                  |     | America. |   |  |  |
|    | DAQ          | Masses: 2x 0.1kg. 2x 0.2kg. 2x |     | Europe.  |   |  |  |
|    | -            | 0.4kg                          |     | Japan    |   |  |  |

|    |               | Solid cylinder                    |     |          |   |  |  |  |
|----|---------------|-----------------------------------|-----|----------|---|--|--|--|
|    |               | Diameter: 120mm                   |     |          |   |  |  |  |
|    |               | Mass: 0.9kg                       |     |          |   |  |  |  |
|    |               | Hollow cylinder                   |     |          |   |  |  |  |
|    |               | Outer diameter: 120mm             |     |          |   |  |  |  |
|    |               | Inner diameter: 110mm             |     |          |   |  |  |  |
|    |               | Mass: 0.9kg                       |     |          |   |  |  |  |
|    |               | Weight for the drive 1N           |     |          |   |  |  |  |
|    |               | Experimental Capabilities: -      |     |          |   |  |  |  |
|    |               | Investigation of the inertia of   |     |          |   |  |  |  |
|    |               | various bodies in rotational      |     |          |   |  |  |  |
|    |               | motion hollow cylinder, solid     |     |          |   |  |  |  |
|    |               | cylinder or rotating bar with     |     |          |   |  |  |  |
|    |               | masses as a rotating body.        |     |          |   |  |  |  |
| 3. | Transducers,  | Input Transducers: Carbon         | Nos | North    | 1 |  |  |  |
|    | Instrumentati | track. Wire wound & precision     |     | America, |   |  |  |  |
|    | on & Control  | rotary potentiometers. Slide      |     | Europe,  |   |  |  |  |
|    | Teaching Set  | potentiometers. NTC               |     | Japan    |   |  |  |  |
|    | with DAQ      | thermistors. Type 'K'             |     |          |   |  |  |  |
|    |               | thermocouples. I.C.               |     |          |   |  |  |  |
|    |               | temperature sensor.               |     |          |   |  |  |  |
|    |               | Photoconductive cell.             |     |          |   |  |  |  |
|    |               | Photovoltaic cell.                |     |          |   |  |  |  |
|    |               | Phototransistor. PIN diode.       |     |          |   |  |  |  |
|    |               | Linear variable differential      |     |          |   |  |  |  |
|    |               | transformer. Linear variable      |     |          |   |  |  |  |
|    |               | capacitor. Strain gauge. Air-flow |     |          |   |  |  |  |
|    |               | sensor. Air pressure sensor.      |     |          |   |  |  |  |
|    |               | Slotted opto-sensor. Reflective   |     |          |   |  |  |  |
|    |               | opto-sensor. Inductive            |     |          |   |  |  |  |
|    |               | Proximity Sensor. Hall Effect     |     |          |   |  |  |  |
|    |               | sensor. Precision servo-          |     |          |   |  |  |  |
|    |               | potentiometer. Tacho-             |     |          |   |  |  |  |
|    |               | generator. Humidity sensor.       |     |          |   |  |  |  |
|    |               | Dynamic microphone.               |     |          |   |  |  |  |
|    |               | Ultrasonic receiver. Output       |     |          |   |  |  |  |
|    |               | Devices: Heater. Filament         |     |          |   |  |  |  |

|  | Lamp. DC Motor. Solenoid Air      |  |  |  |  |
|--|-----------------------------------|--|--|--|--|
|  | Valve. Ultrasonic transmitter.    |  |  |  |  |
|  | Buzzer. Loudspeaker. Relay.       |  |  |  |  |
|  | Solenoid. Counter/timer unit      |  |  |  |  |
|  | with LED display. Bar graph       |  |  |  |  |
|  | voltage indicator. Analog 10V     |  |  |  |  |
|  | center-zero meter. Signal         |  |  |  |  |
|  | Conditioning Circuits: Buffers.   |  |  |  |  |
|  | Inverters, Comparator with        |  |  |  |  |
|  | switchable hysteresis.            |  |  |  |  |
|  | Amplifiers with gain and offset   |  |  |  |  |
|  | control Current amplifier         |  |  |  |  |
|  | Summing amplifier Differential    |  |  |  |  |
|  | amplifier Instrumentation         |  |  |  |  |
|  | amplifiers AC amplifier           |  |  |  |  |
|  | Oscillator 40kHz, Filter 40kHz    |  |  |  |  |
|  | Low-pass filter with switchable   |  |  |  |  |
|  | time constant. Precision full-    |  |  |  |  |
|  | wave rectifier. Sample and hold   |  |  |  |  |
|  | circuit Integrator with           |  |  |  |  |
|  | switchable time constant          |  |  |  |  |
|  | Differentiator with switchable    |  |  |  |  |
|  | time constant V/F and F/V         |  |  |  |  |
|  | convertors V/Land I/V             |  |  |  |  |
|  | converters. V/I and I/V           |  |  |  |  |
|  | converters. Alarm oscillator with |  |  |  |  |
|  | switchable latching. Fower        |  |  |  |  |
|  | Internal Dower Supplies: 51/      |  |  |  |  |
|  | FV 1A provision supplies5V,       |  |  |  |  |
|  | +50 TA precision supply. $-120$ , |  |  |  |  |
|  | +12v TA legulated supply.         |  |  |  |  |
|  | Proumatic Supply: Internal        |  |  |  |  |
|  | rneumatic pump. D.C. motor,       |  |  |  |  |
|  | rational sector and sector and    |  |  |  |  |
|  | reflective opto-sensors for       |  |  |  |  |
|  | incremental and absolute          |  |  |  |  |
|  | position, and a 360 degree        |  |  |  |  |
|  | precision potentiometer with      |  |  |  |  |

|    |                                                                             | indicator dial for closed-loop<br>position control experiments.<br>System Includes: Trainer.<br>Accessory and Lead Kit. Mains<br>Lead. Curriculum Manual.<br>Student Manual. Instructors<br>Manual. Technical Manual. All<br>Manuals in PDF Format on<br>CDROM. Function Generator.<br>Auto-ranging Digital Millimeter<br>(Qty: 2). Digital Storage<br>Oscilloscope.                                                                                                                                                                                                              |     |                                       |   |  |  |
|----|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------|---|--|--|
| 4. | Methods to<br>determine the<br>elastic line<br>Mohrs<br>Analogy with<br>DAQ | Beam Length: 1000 mm<br>cross-section: 20x4mm<br>material: steel<br>Weights<br>7x 1N (hanger)<br>28x 1N<br>21x 5N<br>Measuring ranges<br>force: ±50N, graduation: 1N<br>travel: 0 to 20mm, graduation:<br>0.01mm<br><b>Experimental Capabilities: -</b><br>a. Elastic lines for statically<br>determinate or<br>indeterminate beams<br>under load<br>b. Determination of the<br>elastic line of a beam by<br>the principle of virtual<br>work (calculation)<br>c. Mohr's analogy (area<br>moment method devised<br>by Mohr; graphical<br>representation)<br>d. Application of the | Nos | North<br>America,<br>Europe,<br>Japan | 1 |  |  |

Page **9** of **29** 

| _  |                                                 | <ul> <li>principle of superposition</li> <li>e. Determination of the maximum deflection of the beam</li> <li>f. Angle of inclination of the beam</li> <li>g. Comparison between calculated and measured values for angle of inclination and deflection</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                           |     |                                       |  |  |  |
|----|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------|--|--|--|
| 5. | Deformation<br>of Straight<br>Beams with<br>DAQ | 3 steel beams with different<br>cross-sections<br>1 brass and 1 aluminum beam<br>3 articulated, height-adjustable<br>supports with force gauge<br>1 support with clamp fixing<br>force gauges can be zeroed<br>3 dial gauges to record<br>deformations<br>weights with adjustable hooks<br>anodized aluminum section<br>frame housing the experiment<br>storage system to house the<br>components<br>Beam<br>length: 1000mm<br>Cross-sections: 3x20mm<br>(steel), 4x20mm (steel),<br>6x20mm (Steel, Brass,<br>Aluminum)<br>Frame opening: 1320x480mm<br>Weights<br>4x 2.5N (hanger)<br>4x 2.5N<br>16x 5N<br>Measuring ranges<br>Force: ±50N, graduation: 1N | NOS | North<br>America,<br>Europe,<br>Japan |  |  |  |

|   |              | Travel: 0 to 20mm, graduation: |     |       |   |  |  |
|---|--------------|--------------------------------|-----|-------|---|--|--|
|   |              | 0.01mm                         |     |       |   |  |  |
|   |              | Experimental Capabilities: -   |     |       |   |  |  |
|   |              | a. Investigation of the        |     |       |   |  |  |
|   |              | deflection for statically      |     |       |   |  |  |
|   |              | determinate and                |     |       |   |  |  |
|   |              | statically indeterminate       |     |       |   |  |  |
|   |              | Straight beams                 |     |       |   |  |  |
|   |              | Cantilever beam Single-        |     |       |   |  |  |
|   |              | span beam dual- or             |     |       |   |  |  |
|   |              | triple-span beam               |     |       |   |  |  |
|   |              | b Formulation of the           |     |       |   |  |  |
|   |              | differential equation for      |     |       |   |  |  |
|   |              | the elastic line               |     |       |   |  |  |
|   |              | c Deflection on a              |     |       |   |  |  |
|   |              | cantilever beam                |     |       |   |  |  |
|   |              | d Measurement of               |     |       |   |  |  |
|   |              | deflection at the force        |     |       |   |  |  |
|   |              | application point              |     |       |   |  |  |
|   |              | e Deflection of a dual-span    |     |       |   |  |  |
|   |              | beam on three supports         |     |       |   |  |  |
|   |              | f Measurement of the           |     |       |   |  |  |
|   |              | support reactions              |     |       |   |  |  |
|   |              | a Measurement of the           |     |       |   |  |  |
|   |              | deformations                   |     |       |   |  |  |
|   |              | h Influence of the material    |     |       |   |  |  |
|   |              | (modulus of elasticity)        |     |       |   |  |  |
|   |              | and the beam cross-            |     |       |   |  |  |
|   |              | section (geometry) on          |     |       |   |  |  |
|   |              | the elastic line               |     |       |   |  |  |
|   |              | i. Application of the          |     |       |   |  |  |
|   |              | principle of virtual work      |     |       |   |  |  |
|   |              | on statically determinate      |     |       |   |  |  |
|   |              | and indeterminate beam.        |     |       |   |  |  |
|   |              | i. Determination of lines of   |     |       |   |  |  |
|   |              | influence Arithmetically       |     |       |   |  |  |
| 6 | Gauge factor | Bending bar with 2 strain      | Nos | North | 1 |  |  |

|   | measurement  | gauges on the compression                       | America. |   |  |  |
|---|--------------|-------------------------------------------------|----------|---|--|--|
|   | Apparatus of | side and tension side                           | Furope   |   |  |  |
|   | Strain Gauge | respectively                                    | lanan    |   |  |  |
|   | with DAO     | Strain gauge configured as full                 | Japan    |   |  |  |
|   |              | bridgo                                          |          |   |  |  |
|   |              | 2 point ball bearing mounting of                |          |   |  |  |
|   |              | 2-point ball bearing mounting of                |          |   |  |  |
|   |              | application                                     |          |   |  |  |
|   |              | Application<br>Machanical load application      |          |   |  |  |
|   |              |                                                 |          |   |  |  |
|   |              | Diel gewae with adjustable diel                 |          |   |  |  |
|   |              | Dial gauge with adjustable dial                 |          |   |  |  |
|   |              | deflection                                      |          |   |  |  |
|   |              | deflection<br>Measuring angulifier with 4 digit |          |   |  |  |
|   |              | Measuring amplifier with 4-digit                |          |   |  |  |
|   |              | digital display.                                |          |   |  |  |
|   |              | Bending bar made of steel:                      |          |   |  |  |
|   |              | 660x25x12mm                                     |          |   |  |  |
|   |              | Strain gauge application                        |          |   |  |  |
|   |              | full bridge, 350 Ohm                            |          |   |  |  |
|   |              | I wo strain gauges on the top                   |          |   |  |  |
|   |              | and underside of the bar                        |          |   |  |  |
|   |              | respectively.                                   |          |   |  |  |
|   |              | Amplifier measuring range:                      |          |   |  |  |
|   |              | ±2mV/V                                          |          |   |  |  |
|   |              | Resolution: 1µV/V                               |          |   |  |  |
|   |              | Zero balancing adjustment                       |          |   |  |  |
|   |              | range: ±1mV                                     |          |   |  |  |
|   |              | Dial gauge 0 to 20mm                            |          |   |  |  |
|   |              | Graduation: 0.01mm                              |          |   |  |  |
|   |              | Experimental Capabilities: -                    |          |   |  |  |
|   |              | a. Fundamentals of                              |          |   |  |  |
|   |              | measurement using                               |          |   |  |  |
|   |              | strain gauges.                                  |          |   |  |  |
|   |              | b. Determination of the                         |          |   |  |  |
|   |              | gauge factor of strain                          |          |   |  |  |
|   |              | gauges.                                         |          |   |  |  |
| 7 | Hydrostatic  | All metallic items Stainless steel              | USA,     | 2 |  |  |

| Bench with  | Diagram in the front panel with  | Canada, |   |  |   |  |
|-------------|----------------------------------|---------|---|--|---|--|
| data        | distribution of the elements     | Europe, |   |  |   |  |
| acquisition | similar to the real one.         | Japan,  |   |  |   |  |
| system and  | Air pump, Water pump             |         |   |  |   |  |
| following   | "Alcohol thermometer, range: -   |         |   |  |   |  |
| Modules and | 10 – 60 ° C.                     |         |   |  |   |  |
| Accessories | Hydrometer (0 – 65 Baumé,        |         |   |  |   |  |
|             | 0.600 – 2.000 Sp/gr).            |         |   |  |   |  |
|             | Capillary viscosimeter: 0.5 – 3  |         |   |  |   |  |
|             | cp.                              |         |   |  |   |  |
|             | Capillary viscosimeter: 2 – 10   |         |   |  |   |  |
|             | cp.                              |         |   |  |   |  |
|             | Capillary viscosimeter: 10 – 55  |         |   |  |   |  |
|             | cp.                              |         |   |  |   |  |
|             | Capillary viscosimeter: 55 – 300 |         |   |  |   |  |
|             | cp.                              |         |   |  |   |  |
|             | Three graduated cylinders 250    |         |   |  |   |  |
|             | ml glass.                        |         |   |  |   |  |
|             | Cylinders graduated 1000 ml      |         |   |  |   |  |
|             | plastic.                         |         |   |  |   |  |
|             | Two 650 ml glass beakers.        |         |   |  |   |  |
|             | I hree glass elements for        |         |   |  |   |  |
|             | demonstration of free surface in |         |   |  |   |  |
|             | static conditions.               |         |   |  |   |  |
|             | Bourdon manometer, range: 0      |         |   |  |   |  |
|             | – 3 bar.                         |         |   |  |   |  |
|             | Two U tube manometers,           |         |   |  |   |  |
|             | range: 0 – 450 mm.               |         |   |  |   |  |
|             | Dringinle (lever belongs with    |         |   |  |   |  |
|             | diaple.compative.com             |         |   |  |   |  |
|             | alsplacement vessel, bucket      |         |   |  |   |  |
|             | Monther Station: Barameter up    |         |   |  |   |  |
|             | to 1050 hPo                      |         |   |  |   |  |
|             | Thermometer: $10 - 60^{\circ}$ C |         |   |  |   |  |
|             | Hydromotor: $0 - 100 \%$         |         |   |  |   |  |
|             | Stop clock                       |         |   |  |   |  |
|             |                                  |         | 1 |  | 1 |  |

|   |                                          | <ul> <li>Bleed valves and circuit<br/>selection valves.</li> <li>Module of capillarity in parallel<br/>plates.</li> <li>Module of tubular capillary<br/>tubes."</li> <li>The bench must be capable<br/>and should meet operational<br/>requirement of the below<br/>mentioned modules and<br/>accessories.</li> <li>a) Dead Weight Calibration<br/>Apparatus.</li> <li>b) Flow over Weirs<br/>Apparatus.</li> <li>c) Hydrostatic Pressure<br/>Apparatus.</li> <li>d) Metacentric Height<br/>Calculation Apparatus.</li> </ul> |                                      |   |  |  |  |
|---|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---|--|--|--|
|   |                                          | <b>Experimental Capabilities:-</b><br>Ability to measure<br>Surface tension,<br>Capillarity,<br>Buoyancy force,<br>Hydrostatic pressure in liquids<br>Total Pressure and Static<br>Pressure<br>Density of liquids                                                                                                                                                                                                                                                                                                             |                                      |   |  |  |  |
| а | Dead Weight<br>Calibration<br>Apparatus. | Pressure manometer: Bourdon<br>type. 0 – 3 bar.<br>Set of masses of different<br>weights.<br>Piston diameter: 18-20 mm.<br>Piston weight: 0.5 Kg"                                                                                                                                                                                                                                                                                                                                                                             | USA,<br>Canada,<br>Europe,<br>Japan, | 2 |  |  |  |

| b | Flow over<br>Weirs<br>Apparatus       | Scale of the level meter: 0 –<br>165 mm.<br>Dimensions of the weirs: 170 x<br>240 x 40 mm.<br>Neckline angle in the V-shape<br>weir: 90°.<br>Dimension of rectangular notch:<br>30 x 85 mm"                                                                                                                | USA,<br>Canada,<br>Europe,<br>Japan  | 2 |  |  |  |
|---|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---|--|--|--|
| C | Hydrostatic<br>Pressure<br>Apparatus. | Tank capacity: 5.5-6 L.<br>Distance between suspended<br>masses and the support point:<br>285 mm.<br>Area of the section: 0.007-<br>0.0010 m <sup>2</sup> .<br>Total depth of submerged<br>quadrant:165 mm<br>Height of support point on the<br>quadrant: 100 mm.<br>Set of masses of different<br>weights | USA,<br>Canada,<br>Europe,<br>Japan  | 2 |  |  |  |
| d | Metacentric<br>Height                 | Maximum angle: +/- 13.<br>Corresponding lineal<br>dimension: +/- 90 mm.<br>Dimension of the float: length =<br>353 mm, width = 204 mm, total<br>height = 480 mm.                                                                                                                                           | USA,<br>Canada,<br>Europe,<br>Japan, | 2 |  |  |  |

## **Special Instructions**

| Description                                                      |     | Bid | der       | Tech Scruti | ny to be do | ne by User |
|------------------------------------------------------------------|-----|-----|-----------|-------------|-------------|------------|
|                                                                  | Yes | No  | Alternate | Accepted    | Rejected    | Reasons    |
|                                                                  |     |     | Offer     |             |             | of         |
|                                                                  |     |     |           |             |             | Rejection  |
| Environment Conditions                                           |     |     |           |             |             |            |
| (a) Temperature range: 05°C to +45°C                             |     |     |           |             |             |            |
| (b) Relative humidity: 0-70% non-condensing                      |     |     |           |             |             |            |
| <b>Warranty period</b> Two years from the date of commissioning. |     |     |           |             |             |            |
| Training NotesSupplier will provide a set of handouts for        |     |     |           |             |             |            |
| training on operation and maintenance of the equipment           |     |     |           |             |             |            |
| PublicationsSupplier is to provide hard and soft copies          |     |     |           |             |             |            |
| (CD) of following manuals.                                       |     |     |           |             |             |            |
| (a) <b>Operational / Maintenance manual</b> : - Qty 01 with      |     |     |           |             |             |            |
| Equipment and additional Qty 02 for record purposes and should   |     |     |           |             |             |            |
| consist of following sections:-                                  |     |     |           |             |             |            |
| (1)Equipment Description /Operation:-                            |     |     |           |             |             |            |
| (a)Specifications                                                |     |     |           |             |             |            |
| (b)Description                                                   |     |     |           |             |             |            |
| (c)Operation                                                     |     |     |           |             |             |            |
| (2)Servicing:-                                                   |     |     |           |             |             |            |
| (a)Maintenance Schedule                                          |     |     |           |             |             |            |
| (b)Adjustment / test                                             |     |     |           |             |             |            |
| (c)Removal / Installation procedure                              |     |     |           |             |             |            |
| (d)Tools Used                                                    |     |     |           |             |             |            |
| (3) Trouble shooting guide                                       |     |     |           |             |             |            |
| (4) Cleaning requirements                                        |     |     |           |             |             |            |
| (5) Shipping and receiving                                       |     |     |           |             |             |            |
| (6) Storage requirements                                         |     |     |           |             |             |            |
| (b) <b>IPB</b> (Illustrated Parts Breakdown Manual) should have  |     |     |           |             |             |            |
| full parts description along with detailed diagrams (exploded    |     |     |           |             |             |            |
| view).                                                           |     |     |           |             |             |            |
| (c) <b>Experimental manuals</b> which must contain the list and  |     |     |           |             |             |            |
| procedure of the experiments that equipment can perform.         |     |     |           |             |             |            |
| Spares / Technical Support                                       |     |     |           |             |             |            |
| (a) Supplier to have in-country spares / technical support and   |     |     |           |             |             |            |

| ensure spares and technical support / assistance for next 10        |  |
|---------------------------------------------------------------------|--|
| vears                                                               |  |
| (b) Comprehensive list of spares required for scheduled             |  |
| maintenance of Equipment is to be provided                          |  |
| (c) Any software provided must have its license                     |  |
| (d) Software upgrade support must be provided free of cost for      |  |
| 10 x years with renewed license at every upgrade                    |  |
| (e) Supplier must also provide calibration service for at least 5 x |  |
| years after commissioning                                           |  |
| Additional Spare / Replaceable parts.                               |  |
| (a) Replaceable spare / parts during scheduled                      |  |
| inspections are to be identified and provided as per                |  |
| requirement along with equipment sufficient to cater five           |  |
| years consumption.                                                  |  |
| (b) All specialized / standard tools required for                   |  |
| inspection / repair / servicing must be supplied along with         |  |
| equipment.                                                          |  |
| Physical Inspection Criteria: 100% physical inspection of store     |  |
| will be carried out before commissioning of the equipment for       |  |
| following details:-                                                 |  |
| (a) For physical damage, scratches and deformity.                   |  |
| (b) Accessories /components as per contractual                      |  |
| specifications.                                                     |  |
| (c) Technical Manuals (Operation manual, user guide,                |  |
| IPBS).                                                              |  |
| (d) Quality certificate and calibration certificate by the          |  |
| OEM                                                                 |  |
| (e) OEW certificate and verifiable documents by the                 |  |
| supplier that store has been procured from certified                |  |
| source and is factory new and from fatest                           |  |
| (f) Brand name and country of origin                                |  |
| (i) Brand hame and country of origin.                               |  |
| (a) Commissioning by OEM rop at his own cost and risk               |  |
| at designated place at NI ITECH                                     |  |
| (b) Any special requirement for installation operation              |  |
| and commissioning must be specified in the                          |  |

| offer by the supplier.                                        |  |  |  |
|---------------------------------------------------------------|--|--|--|
| Training                                                      |  |  |  |
| 01 week OEM operational/ maintenance training at              |  |  |  |
| NUTECH                                                        |  |  |  |
| Improvement and Safety Measures                               |  |  |  |
| Any improvement and safety measures suggested by NUTECH       |  |  |  |
| during commissioning are to be resolved by the supplier /     |  |  |  |
| manufacturer at no extra cost.                                |  |  |  |
| Liability of Supplier                                         |  |  |  |
| (a) OEM certificate of authorized dealership Supplier         |  |  |  |
| is to provide original OEM certificate of subject equipment   |  |  |  |
| bought directly from the manufacturer and being an            |  |  |  |
| authorized dealer.                                            |  |  |  |
| (b) In case the equipment supplied is not compatible          |  |  |  |
| with specifications, the supplier will be obliged to call his |  |  |  |
| representatives at his own cost for consultation and          |  |  |  |
| corrective action                                             |  |  |  |
| Special Notes                                                 |  |  |  |
| (a) Additional requirements for the maintenance of            |  |  |  |
| equipment (if any) must be intimated by the supplier in       |  |  |  |
| technical offer.                                              |  |  |  |
| (b) Supplier must provide the list of organizations           |  |  |  |
| using same equipment in Pakistan (if any).                    |  |  |  |
| (c) Equipment must be a standard product of OEM               |  |  |  |
| available at web address of OEM.                              |  |  |  |
| (d) In case of premature failure of the equipment,            |  |  |  |
| OEM has to replace / rectify the item free of cost.           |  |  |  |
| Required transportation charges would be borne by the         |  |  |  |
| supplier.                                                     |  |  |  |

| Instl/Assy/Commissioning Req                     | $\checkmark$          | Contract with OEM/Supplier        | $\checkmark$     |  |
|--------------------------------------------------|-----------------------|-----------------------------------|------------------|--|
| Performance Bond Req                             | ✓                     | Offer Req for Package Deal        | X                |  |
| Note: (If any)                                   |                       | Warranty req and Duration         | ✓ (Min 2<br>yrs) |  |
| List of "Additional Req may be" sent to procurem | ent office, immediate | lý                                |                  |  |
| Maint Spare Req                                  | ✓                     | Essentially Running spare req     | $\checkmark$     |  |
| Pub/Lit Req                                      | $\checkmark$          | Req of Cert for test data results | ✓                |  |
| Trg Req                                          | Local by<br>OEM rep   | Req of Calibration                | ✓                |  |
| Note: Tick relevant box                          |                       |                                   |                  |  |

| Firm Name   |  |
|-------------|--|
| Signature   |  |
| Name        |  |
| Designation |  |



## NATIONAL UNIVERSITY OF TECHNOLOGY SUPPLY CHAIN MANAGEMENT OFFICE

## **TECHNICAL OFFER**

## User Reference No Mech Lab Eqpt-004 Date: 02-05-2019

## Please fill in the following essential parameters:

- 1. Validity of Offer:\_\_\_\_\_ Days
- Delivery Period: \_\_\_\_\_ Days
   Country of Origin: \_\_\_\_\_

(Should not be less than 90 days) (After Placement of order)

4. Warranty/Guarantee: \_\_\_\_\_\_ Months from the date of final acceptance of the stores.

#### <u>General</u>

- GST No: \_\_\_\_\_ (Please enclose copy)
- NTN/CNIC: \_\_\_\_\_\_ (if exempted, please provide valid exemption certificate)

**<u>Payment Terms</u>**: (Mandatory to mention) (Please tick/ mention the desired payment term/ mode)

- 1. 50 % advance payment (Against valid bank Guarantee)
- 2. 50% Payment after delivery, installation /commissioning, user satisfaction certificate

## **Details of Payment Recipient**

(1) Name/Title:

(2) Address:\_\_\_\_\_

Signature: \_\_\_\_\_

Official Seal:

Name: \_\_\_\_\_

Designation:

### Annex B

## NATIONAL UNIVERSITY OF TECHNOLOGY SUPPLY CHAIN MANAGEMENT OFFICE

## **FINANCIAL OFFER**

User Reference No Mech Lab Eqpt-005 Date: 02-05-2019

| Ser | Part<br>No | Nomen/<br>Experiment              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A/U | Qty<br>Req | Unit Price<br>(Rs)<br>(excluding<br>taxes) | All taxes) | Unit price<br>with all<br>taxes (rs) | Total<br>Amount of<br>Total Qty<br>With Tax<br>(Rs) |
|-----|------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|--------------------------------------------|------------|--------------------------------------|-----------------------------------------------------|
| 1.  |            | Vibrations<br>Trainer with<br>DAQ | Vibration trainer with experiments on<br>damping, resonance, dual-mass system<br>and vibration absorption<br>6 pendulum oscillators<br>2 bar-type oscillators<br>1 spring-mass oscillator<br>Electrical imbalance exciter control unit for<br>the imbalance exciter with a digital<br>frequency display and a TTL output for<br>triggering external devices<br>Tune able absorber with a leaf spring<br>adjustable oil damper<br>Electrically operated drum recorder for<br>recording free vibrations<br>Polar chart recorder for determining the<br>amplitude and phase of forced vibrations<br>Technical data<br>Beam, rigid: LxWxH: 700x25x12mm, 1.6kg<br>Beam, elastic: LxWxH: 700x25x4mm,<br>0.6kg<br>Tension-pressure springs<br>0.75N/mm | Nos | 1          |                                            |            |                                      |                                                     |

Annex C

|    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |   |  | r |
|----|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|--|---|
|    |                                  | <ul> <li>1.5N/mm</li> <li>3.0N/mm</li> <li>Imbalance exciter</li> <li>0 to 50Hz</li> <li>100cmg</li> <li>Oil damper: 5 to 15Ns/m</li> <li>Absorber leaf spring: -</li> <li>WxH: 20x1.5mm</li> <li>total mass: approx. 1.1kg</li> <li>Tune able: 5 to 50Hz</li> <li>Drum recorder: - 20mm/s, width 100mm</li> <li>Polar chart recorder: - Ø 100mm</li> <li>Experimental Capabilities: -</li> <li>Experiments with <ul> <li>i. Pendulums</li> <li>j. Spring-mass system</li> <li>k. Bar-type oscillator</li> <li>I. Undamped oscillation</li> <li>m. Damped oscillation</li> <li>n. Forced vibration</li> <li>o. Damped and un damped resonance</li> <li>Absorber effect in multi-mass oscillators.</li> </ul> </li> </ul> |     |   |  |   |
| 2. | Moment of<br>Inertia with<br>DAQ | Rotating bar<br>Length: 550mm<br>Masses: 2x 0.1kg, 2x 0.2kg, 2x 0.4kg<br>Solid cylinder<br>Diameter: 120mm<br>Mass: 0.9kg<br>Hollow cylinder<br>Outer diameter: 120mm<br>Inner diameter: 120mm<br>Inner diameter: 110mm<br>Mass: 0.9kg<br>Weight for the drive 1N<br><b>Experimental Capabilities: -</b><br>Investigation of the inertia of various<br>bodies in rotational motion hollow                                                                                                                                                                                                                                                                                                                                | Nos | 1 |  |   |

|    |              | cylinder, solid cylinder or rotating bar    |     |   |  |  |
|----|--------------|---------------------------------------------|-----|---|--|--|
|    |              | with masses as a rotating body.             |     |   |  |  |
| 3. | Transducers, | Input Transducers: Carbon track. Wire       | Nos | 1 |  |  |
|    | Instrumenta  | wound & precision rotary potentiometers.    |     |   |  |  |
|    | tion &       | Slide potentiometers. NTC thermistors.      |     |   |  |  |
|    | Control      | Type 'K' thermocouples. I.C. temperature    |     |   |  |  |
|    | Teaching     | sensor. Photoconductive cell. Photovoltaic  |     |   |  |  |
|    | Set with     | cell. Phototransistor. PIN diode. Linear    |     |   |  |  |
|    | DAQ          | variable differential transformer. Linear   |     |   |  |  |
|    |              | variable capacitor. Strain gauge. Air-flow  |     |   |  |  |
|    |              | sensor. Air pressure sensor. Slotted opto-  |     |   |  |  |
|    |              | sensor. Reflective opto-sensor. Inductive   |     |   |  |  |
|    |              | Proximity Sensor. Hall Effect sensor.       |     |   |  |  |
|    |              | Precision servo-potentiometer. Tacho-       |     |   |  |  |
|    |              | generator. Humidity sensor. Dynamic         |     |   |  |  |
|    |              | microphone. Ultrasonic receiver. Output     |     |   |  |  |
|    |              | Devices: Heater. Filament Lamp. DC          |     |   |  |  |
|    |              | Motor. Solenoid Air Valve. Ultrasonic       |     |   |  |  |
|    |              | transmitter. Buzzer. Loudspeaker. Relay.    |     |   |  |  |
|    |              | Solenoid. Counter/timer unit with LED       |     |   |  |  |
|    |              | display. Bar graph voltage indicator.       |     |   |  |  |
|    |              | Analog 10V center-zero meter. Signal        |     |   |  |  |
|    |              | Conditioning Circuits: Buffers. Inverters.  |     |   |  |  |
|    |              | Comparator with switchable hysteresis.      |     |   |  |  |
|    |              | Amplifiers with gain and offset control.    |     |   |  |  |
|    |              | Current amplifier. Summing amplifier.       |     |   |  |  |
|    |              | Differential amplifier. Instrumentation     |     |   |  |  |
|    |              | amplifiers. AC amplifier. Oscillator 40kHz. |     |   |  |  |
|    |              | Filter 40kHz. Low-pass filter with          |     |   |  |  |
|    |              | switchable time constant. Precision full-   |     |   |  |  |
|    |              | wave rectifier. Sample and hold circuit.    |     |   |  |  |
|    |              | Integrator with switchable time constant.   |     |   |  |  |
|    |              | Differentiator with switchable time         |     |   |  |  |
|    |              | constant. V/F and F/V converters. V/I and   |     |   |  |  |
|    |              | I/V converters. Alarm oscillator with       |     |   |  |  |
|    |              | switchable latching. Power amplifier.       |     |   |  |  |
|    |              | Electronic switch. Internal Power Supplies: |     |   |  |  |

#### Page **24** of **29**

|    |                                                                             | -5V, +5V 1A precision supply12V, +12V<br>1A regulated supply. Pneumatic Supply:<br>Internal Pneumatic pump. D.C. motor,<br>tacho-generator, slotted and reflective<br>opto-sensors for incremental and absolute<br>position, and a 360 degree precision<br>potentiometer with indicator dial for<br>closed-loop position control experiments.<br>System Includes: Trainer. Accessory and<br>Lead Kit. Mains Lead. Curriculum Manual.<br>Student Manual. Instructors Manual.<br>Technical Manual. All Manuals in PDF<br>Format on CDROM. Function Generator.<br>Auto-ranging Digital Millimeter (Qty: 2).<br>Digital Storage Oscilloscope.                                                                               |     |   |  |  |
|----|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|--|--|
| 4. | Methods to<br>determine<br>the elastic<br>line Mohrs<br>Analogy<br>with DAQ | <ul> <li>Beam Length: 1000 mm</li> <li>cross-section: 20x4mm</li> <li>material: steel</li> <li>Weights</li> <li>7x 1N (hanger)</li> <li>28x 1N</li> <li>21x 5N</li> <li>Measuring ranges</li> <li>force: ±50N, graduation: 1N</li> <li>travel: 0 to 20mm, graduation: 0.01mm</li> <li>Experimental Capabilities: -</li> <li>h. Elastic lines for statically</li> <li>determinate or indeterminate</li> <li>beams under load</li> <li>i. Determination of the elastic line of a</li> <li>beam by the principle of virtual work</li> <li>(calculation)</li> <li>j. Mohr's analogy (area moment</li> <li>method devised by Mohr; graphical</li> <li>representation)</li> <li>k. Application of the principle of</li> </ul> | Nos | 1 |  |  |

|    |            | I. Determination of the maximum             |     |   |  |  |
|----|------------|---------------------------------------------|-----|---|--|--|
|    |            | deflection of the beam                      |     |   |  |  |
|    |            | m. Angle of inclination of the beam         |     |   |  |  |
|    |            | Comparison between calculated and           |     |   |  |  |
|    |            | measured values for angle of                |     |   |  |  |
|    |            | inclination and deflection                  |     |   |  |  |
| 5. | Deformatio | 3 steel beams with different cross-sections | Nos | 1 |  |  |
|    | n of       | 1 brass and 1 aluminum beam                 |     |   |  |  |
|    | Straight   | 3 articulated, height-adjustable supports   |     |   |  |  |
|    | Beams with | with force gauge                            |     |   |  |  |
|    | DAQ        | 1 support with clamp fixing                 |     |   |  |  |
|    |            | force gauges can be zeroed                  |     |   |  |  |
|    |            | 3 dial gauges to record deformations        |     |   |  |  |
|    |            | weights with adjustable hooks               |     |   |  |  |
|    |            | anodized aluminum section frame housing     |     |   |  |  |
|    |            | the experiment                              |     |   |  |  |
|    |            | storage system to house the components      |     |   |  |  |
|    |            | Beam                                        |     |   |  |  |
|    |            | length: 1000mm                              |     |   |  |  |
|    |            | Cross-sections: 3x20mm (steel), 4x20mm      |     |   |  |  |
|    |            | (steel), 6x20mm (Steel, Brass, Aluminum)    |     |   |  |  |
|    |            | Frame opening: 1320x480mm                   |     |   |  |  |
|    |            | Weights                                     |     |   |  |  |
|    |            | 4x 2.5N (hanger)                            |     |   |  |  |
|    |            | 4x 2.5N                                     |     |   |  |  |
|    |            | 16x 5N                                      |     |   |  |  |
|    |            | Measuring ranges                            |     |   |  |  |
|    |            | Force: ±50N, graduation: 1N                 |     |   |  |  |
|    |            | Travel: 0 to 20mm, graduation: 0.01mm       |     |   |  |  |
|    |            | Experimental Capabilities: -                |     |   |  |  |
|    |            | k. Investigation of the deflection for      |     |   |  |  |
|    |            | statically determinate and statically       |     |   |  |  |
|    |            | indeterminate Straight beams                |     |   |  |  |
|    |            | Cantilever beam, Single-span                |     |   |  |  |
|    |            | beam, dual- or triple-span beam             |     |   |  |  |
|    |            | I. Formulation of the differential          |     |   |  |  |
|    |            | equation for the elastic line               |     |   |  |  |

## Page **26** of **29**

|   |            | m. Deflection on a cantilever beam         |     |   |  |  |
|---|------------|--------------------------------------------|-----|---|--|--|
|   |            | n. Measurement of deflection at the        |     |   |  |  |
|   |            | force application point                    |     |   |  |  |
|   |            | o. Deflection of a dual-span beam on       |     |   |  |  |
|   |            | three supports                             |     |   |  |  |
|   |            | p. Measurement of the support              |     |   |  |  |
|   |            | reactions                                  |     |   |  |  |
|   |            | a. Measurement of the deformations         |     |   |  |  |
|   |            | r. Influence of the material (modulus      |     |   |  |  |
|   |            | of elasticity) and the beam cross-         |     |   |  |  |
|   |            | section (geometry) on the elastic          |     |   |  |  |
|   |            | line                                       |     |   |  |  |
|   |            | s. Application of the principle of virtual |     |   |  |  |
|   |            | work on statically determinate and         |     |   |  |  |
|   |            | indeterminate beams                        |     |   |  |  |
|   |            | Determination of lines of influence        |     |   |  |  |
|   |            | Arithmetically                             |     |   |  |  |
| 6 | Gauge      | Bending bar with 2 strain gauges on the    | Nos | 1 |  |  |
|   | factor     | compression side and tension side          |     |   |  |  |
|   | measureme  | respectively.                              |     |   |  |  |
|   | nt         | Strain gauge configured as full bridge     |     |   |  |  |
|   | Apparatus  | 2-point ball bearing mounting of bar       |     |   |  |  |
|   | of Strain  | permits purely bending load application    |     |   |  |  |
|   | Gauge with | Mechanical load application device.        |     |   |  |  |
|   | DAQ        | Dial gauge with adjustable dial for direct |     |   |  |  |
|   |            | measurement of deflection                  |     |   |  |  |
|   |            | Measuring amplifier with 4-digit digital   |     |   |  |  |
|   |            | display.                                   |     |   |  |  |
|   |            | Bending bar made of steel: 660x25x12mm     |     |   |  |  |
|   |            | Strain gauge application                   |     |   |  |  |
|   |            | full bridge, 350 Ohm                       |     |   |  |  |
|   |            | Two strain gauges on the top and           |     |   |  |  |
|   |            | underside of the bar respectively.         |     |   |  |  |
|   |            | Amplifier measuring range: ±2mV/V          |     |   |  |  |
|   |            | Resolution: 1µV/V                          |     |   |  |  |
|   |            | Zero balancing adjustment range: ±1mV      |     |   |  |  |
|   |            | Dial gauge 0 to 20mm Graduation:           |     |   |  |  |

|   |             | 0.01mm                                                         |   |  |  |
|---|-------------|----------------------------------------------------------------|---|--|--|
|   |             | Experimental Capabilities: -                                   |   |  |  |
|   |             | c. Fundamentals of measurement                                 |   |  |  |
|   |             | using strain gauges.                                           |   |  |  |
|   |             | Determination of the gauge factor of                           |   |  |  |
|   |             | strain gauges.                                                 |   |  |  |
| 7 | Hydrostatic | All metallic items Stainless steel                             | 2 |  |  |
| - | Bench with  | Diagram in the front panel with distribution                   | _ |  |  |
|   | data        | of the elements similar to the real one.                       |   |  |  |
|   | acquisition | Air pump. Water pump                                           |   |  |  |
|   | system and  | "Alcohol thermometer, range: $-10 - 60 \circ C$ .              |   |  |  |
|   | following   | Hydrometer $(0 - 65 \text{ Baumé}, 0.600 - 600 \text{ Baumé})$ |   |  |  |
|   | Modules     | 2.000 Sp/gr).                                                  |   |  |  |
|   | and         | Capillary viscosimeter: 0.5 – 3 cp.                            |   |  |  |
|   | Accessorie  | Capillary viscosimeter: 2 – 10 cp.                             |   |  |  |
|   | S           | Capillary viscosimeter: 10 – 55 cp.                            |   |  |  |
|   | -           | Capillary viscosimeter: 55 – 300 cp.                           |   |  |  |
|   |             | Three graduated cylinders 250 ml glass.                        |   |  |  |
|   |             | Cylinders graduated 1000 ml plastic.                           |   |  |  |
|   |             | Two 650 ml glass beakers.                                      |   |  |  |
|   |             | Three glass elements for demonstration of                      |   |  |  |
|   |             | free surface in static conditions.                             |   |  |  |
|   |             | Bourdon manometer, range: 0 – 3 bar.                           |   |  |  |
|   |             | Two "U" tube manometers, range: 0 – 450                        |   |  |  |
|   |             | mm.                                                            |   |  |  |
|   |             | Module to study Archimedes' Principle                          |   |  |  |
|   |             | (lever balance with displacement vessel,                       |   |  |  |
|   |             | bucket and cylinder).                                          |   |  |  |
|   |             | Weather Station: Barometer up to 1050                          |   |  |  |
|   |             | hPa.                                                           |   |  |  |
|   |             | Thermometer:-40 – 60° C.                                       |   |  |  |
|   |             | Hygrometer: 0 – 100 %.                                         |   |  |  |
|   |             | Stop clock.                                                    |   |  |  |
|   |             | Bleed valves and circuit selection valves.                     |   |  |  |
|   |             | Module of capillarity in parallel plates.                      |   |  |  |
|   |             | Module of tubular capillary tubes."                            |   |  |  |
|   |             | The bench must be capable and should                           |   |  |  |

#### meet operational requirement of the below mentioned modules and accessories. e) Dead Weight Calibration Apparatus. f) Flow over Weirs Apparatus. q) Hydrostatic Pressure Apparatus. h) Metacentric Height Calculation Apparatus. **Experimental Capabilities:-**Ability to measure Surface tension, Capillarity, Buoyancy force, Hydrostatic pressure in liquids **Total Pressure and Static Pressure** Density of liquids Pressure manometer: Bourdon type. 0 - 3Dead 2 а Weight bar. Calibration Set of masses of different weights. Piston diameter: 18-20 mm. Apparatus. Piston weight: 0.5 Kg" Flow over Scale of the level meter: 0 - 165 mm. 2 b Weirs Dimensions of the weirs: 170 x 240 x 40 Apparatus mm. Neckline angle in the V-shape weir: 90°. Dimension of rectangular notch: 30 x 85 mm" Hydrostatic Tank capacity: 5.5-6 L. 2 С Pressure Distance between suspended masses and Apparatus. the support point: 285 mm. Area of the section: 0.007-0.0010 m<sup>2</sup>. Total depth of submerged quadrant:165 mm Height of support point on the quadrant: 100 mm. Set of masses of different weights

2

d

Metacentric

Maximum angle: +/- 13.

|       | Height | Corresponding lineal dimension: +/- 90                                                       |  |  |  |
|-------|--------|----------------------------------------------------------------------------------------------|--|--|--|
|       |        | mm.<br>Dimension of the float: length = 353<br>mm, width = 204 mm, total height =<br>480 mm. |  |  |  |
| TOTAL |        |                                                                                              |  |  |  |

Bid Bond Ref\_\_\_\_\_ Taxes\_\_\_\_\_

Total Bid Value\_\_\_\_\_

(Bid Bond be attached with Annex C. Copy of Bid Bond be attached with

Technical offer without showing its value). Exposure of bid bond in tech offer may result in rejection offer.

| Firm Name   |
|-------------|
| Signature   |
| Name        |
| Designation |
|             |